Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(5): e0177060, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542161

RESUMEN

Figs (Ficus sp.) are often considered as keystone resources which strongly influence tropical forest ecosystems. We used long-term tree-census data to track the population dynamics of two abundant free-standing fig species, Ficus insipida and F. yoponensis, on Barro Colorado Island (BCI), a 15.6-km2 island in Lake Gatún, Panama. Vegetation cover on BCI consists of a mosaic of old growth (>400 years) and maturing (about 90-150 year old) secondary rainforest. Locations and conditions of fig trees have been mapped and monitored on BCI for more than 35 years (1973-2011), with a focus on the Lutz Catchment area (25 ha). The original distribution of the fig trees shortly after the construction of the Panama Canal was derived from an aerial photograph from 1927 and was compared with previous land use and forest status. The distribution of both fig species (~850 trees) is restricted to secondary forest. Of the original 119 trees observed in Lutz Catchment in 1973, >70% of F. insipida and >90% of F. yoponensis had died by 2011. Observations in other areas on BCI support the trend of declining free-standing figs. We interpret the decline of these figs on BCI as a natural process within a maturing tropical lowland forest. Senescence of the fig trees appears to have been accelerated by severe droughts such as the strong El Niño event in the year 1982/83. Because figs form such an important food resource for frugivores, this shift in resource availability is likely to have cascading effects on frugivore populations.


Asunto(s)
Ficus , Bosque Lluvioso , Ficus/crecimiento & desarrollo , Panamá , Clima Tropical
2.
PLoS One ; 10(7): e0133581, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226482

RESUMEN

Wind-borne pollinating wasps (Agaonidae) can transport fig (Ficus sp., Moraceae) pollen over enormous distances (> 100 km). Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru) for the free-standing fig species Ficus insipida. Genetic differentiation was detected only at distances > 300 km (Jost´s Dest = 0.68 ± 0.07 & FST = 0.30 ± 0.03 between Mesoamerican and Amazonian sites) and evidence for phylogeographic structure (RST>>permuted RST) was only significant in comparisons between Central and South America. Further, we assessed local scale spatial genetic structure (SGS, d ≤ 8 km) in Panama and developed an agent-based model parameterized with data from F. insipida to estimate minimum pollination distances, which determine the contribution of pollen dispersal on SGS. The local scale data for F. insipida was compared to SGS data collected for an additional free-standing fig, F. yoponensis (subgenus Pharmacosycea), and two species of strangler figs, F. citrifolia and F. obtusifolia (subgenus Urostigma) sampled in Panama. All four species displayed significant SGS (mean Sp = 0.014 ± 0.012). Model simulations indicated that most pollination events likely occur at distances > > 1 km, largely ruling out spatially limited pollen dispersal as the determinant of SGS in F. insipida and, by extension, the other fig species. Our results are consistent with the view that Ficus develops fine-scale SGS primarily as a result of localized seed dispersal and/or clumped seedling establishment despite extensive long-distance pollen dispersal. We discuss several ecological and life history factors that could have species- or subgenus-specific impacts on the genetic structure of Neotropical figs.


Asunto(s)
Ficus/genética , Estructuras Genéticas/genética , Moraceae/genética , Polen/genética , Animales , Costa Rica , Bosques , Panamá , Perú , Filogenia , Filogeografía/métodos , Polinización/genética , Plantones/genética , Semillas/genética , Avispas
3.
Oecologia ; 163(2): 425-35, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20354732

RESUMEN

Fruit-eating animals can influence the germination success of seeds through transportation and handling. We experimentally tested the contribution of ingestion by the common fruit-eating bat, Artibeus jamaicensis (Phyllostomidae, Chiroptera), to the percentage and rate of seed germination of figs (Ficus, Moraceae), which are considered keystone species for many frugivores. We collected fruits from three species of native free-standing figs (subgenus Pharmacosycea: F. insipida, F. maxima and F. yoponensis) and three species of native strangler figs (subgenus Urostigma: F. nymphiifolia, F. obtusifolia and F. popenoei) on Barro Colorado Island, Panama. The germination success of seeds removed from fruit pulp either manually or by ingestion was very high (>92%), while seeds that were not removed from fruit pulp were destroyed by fast-growing fungi within a few days. The dynamics of seed germination were not influenced by ingestion, but differed between the two subgenera of figs. In free-standing figs, germination started significantly earlier (5.3 +/- 0.7 days) than in strangler figs (8.6 +/- 1.4 days). Furthermore, strangler seeds were covered with a sticky coating and their seedlings developed cotyledons faster than fine roots, in contrast to free-standing figs that showed the opposite pattern. Our results demonstrate that the germination of fig seeds is positively influenced by passage through the gut of A. jamaicensis. Furthermore, free-standing and strangler figs revealed differences in germination parameters that might be adaptive with respect to the suitability of microsites such as tree fall gaps or host trees for establishment.


Asunto(s)
Quirópteros/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Ficus/fisiología , Germinación/fisiología , Animales , Ficus/microbiología , Frutas/microbiología , Frutas/fisiología , Hongos/crecimiento & desarrollo , Hongos/fisiología , Tránsito Gastrointestinal/fisiología , Geografía , Panamá , Semillas/microbiología , Semillas/fisiología , Factores de Tiempo , Árboles/fisiología , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...